Automatic Fitting of Spiking Neuron Models to Electrophysiological Recordings

نویسندگان

  • Cyrille Rossant
  • Dan F. M. Goodman
  • Jonathan Platkiewicz
  • Romain Brette
چکیده

Spiking models can accurately predict the spike trains produced by cortical neurons in response to somatically injected currents. Since the specific characteristics of the model depend on the neuron, a computational method is required to fit models to electrophysiological recordings. The fitting procedure can be very time consuming both in terms of computer simulations and in terms of code writing. We present algorithms to fit spiking models to electrophysiological data (time-varying input and spike trains) that can run in parallel on graphics processing units (GPUs). The model fitting library is interfaced with Brian, a neural network simulator in Python. If a GPU is present it uses just-in-time compilation to translate model equations into optimized code. Arbitrary models can then be defined at script level and run on the graphics card. This tool can be used to obtain empirically validated spiking models of neurons in various systems. We demonstrate its use on public data from the INCF Quantitative Single-Neuron Modeling 2009 competition by comparing the performance of a number of neuron spiking models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fitting Neuron Models to Spike Trains

Computational modeling is increasingly used to understand the function of neural circuits in systems neuroscience. These studies require models of individual neurons with realistic input-output properties. Recently, it was found that spiking models can accurately predict the precisely timed spike trains produced by cortical neurons in response to somatically injected currents, if properly fitte...

متن کامل

Automated High-Throughput Characterization of Single Neurons by Means of Simplified Spiking Models

Single-neuron models are useful not only for studying the emergent properties of neural circuits in large-scale simulations, but also for extracting and summarizing in a principled way the information contained in electrophysiological recordings. Here we demonstrate that, using a convex optimization procedure we previously introduced, a Generalized Integrate-and-Fire model can be accurately fit...

متن کامل

Capturing the Dynamical Repertoire of Single Neurons with Generalized Linear Models

A key problem in computational neuroscience is to find simple, tractable models that are nevertheless flexible enough to capture the response properties of real neurons. Here we examine the capabilities of recurrent point process models known as Poisson generalized linear models (GLMs). These models are defined by a set of linear filters and a point nonlinearity and are conditionally Poisson sp...

متن کامل

Analytical approximations of the firing rate of an adaptive exponential integrate-and-fire neuron in the presence of synaptic noise

Computational models offer a unique tool for understanding the network-dynamical mechanisms which mediate between physiological and biophysical properties, and behavioral function. A traditional challenge in computational neuroscience is, however, that simple neuronal models which can be studied analytically fail to reproduce the diversity of electrophysiological behaviors seen in real neurons,...

متن کامل

Inhibitory control of shared variability in cortical networks

Cortical networks exhibit intrinsic dynamics that drive coordinated, large-scale fluctuations across neuronal 10 populations and create noise correlations that impact sensory coding. To investigate the network-level 11 mechanisms that underlie these dynamics, we developed novel computational techniques to fit a determin12 istic spiking network model directly to multi-neuron recordings from diff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2010